Zn and P Alloying Effect in Sub-Rapidly Solidified LaFe11.6Si1.4 Magnetocaloric Plates

Author:

Jin Pingxia,Li Yuqiang,Dai Yuting,Xu Zhishuai,Song Changjiang,Luo Zhiping,Zhai Qijie,Han Ke,Zheng Hongxing

Abstract

The occupation mechanism and magnetic transition behavior of trace Zn and P alloying in the sub-rapidly solidified LaFe11.6Si1.4 magnetocaloric plates were investigated. The LaFe11.6Si1.4, LaFe11.6Si1.4Zn0.03, and LaFe11.6Si1.4P0.03 plates were fabricated using the centrifugal casting method in the present work. Experimental results showed that both Zn and P elements were distributed in the La5Si3 and LaFeSi phases during sub-rapid solidification. After annealed at 1373 K for 72 h, the LaFe11.6Si1.4 plate underwent a second-order magnetic transition, while both the LaFe11.6Si1.4Zn0.03 and LaFe11.6Si1.4P0.03 plates underwent a first-order transition. In combination with X-ray diffraction results, it was proposed that both Zn and P atoms prefer to enter the 96i site substituting for FeII/Si atoms according to the density-functional reconstruction of crystallographic structure. The Zn addition led to a slight decrease in magnetic entropy change from 7.0 to 5.9 J/(kg⋅K), while the P addition strikingly enhanced this property to 31.4 J/(kg⋅K) under a magnetic field change of 3 T. The effective refrigeration capacity of the annealed LaFe11.6Si1.4P0.03 plate reached 189.9 J/kg.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3