Modified Leach Residues from Processing Deep-Sea Nodules as Effective Heavy Metals Adsorbents

Author:

Vu NguyenORCID,Kristianová Eva,Dvořák Petr,Abramowski TomaszORCID,Dreiseitl Ivo,Adrysheva AigerimORCID

Abstract

The possible use of leaching residue from leaching deep-sea nodules in SO2/H2SO4/H2O medium as a low-cost adsorbent of heavy metals (Pb(II), Cd(II), Cu(II), Ni(II), Co(II), As(V)) was studied. The leaching residue was found to be an effective adsorbent for all of the tested elements; however, it was inactive in the solution containing As(V). The chemical activation of adsorbent in 10 vol. % HCl resulted in the greatest improvement of adsorption properties, while the activation in 10 vol. % HNO3 and heat treatment at 250 °C did not significantly affect the sorption characteristics of treated adsorbents compared with the original leaching residue. After HCl activation, the maximal adsorption capacities for lead (12.0 mg/g at pH 5.0 after 1 h), nickel (3.1 mg/g at pH 5.5 after 4 h) and cobalt (2.0 mg/g at pH 5.0 after 2 h) were achieved. Additional mechanical treatment connected with HCl activation provided the highest adsorption capacities for cadmium (11.5 mg/g at pH 4.0) and copper (5.7 mg/g at pH 4.5). Coprecipitation of Fe/Al-based particles on the surface of the leaching residue increased As(V) removal of the adsorbent. Surface coating based on AlIII was extremely effective, causing the increase of the adsorption capacity from 0 with the original leaching residue, to 28.1 mg/g (pH 7.0, 24 min). Kinetics studies showed the rapid progress of adsorption for Pb(II), Cd(II), and As(V) in tens of minutes, while the adsorption of Cu(II), Ni(II) and Co(II) approached a steady state after 2 h.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3