Investigation of the Dynamic Recrystallization of FeMnSiCrNi Shape Memory Alloy under Hot Compression Based on Cellular Automaton

Author:

Wang Yu,Xing XiaodongORCID,Zhang Yanqiu,Jiang Shuyong

Abstract

Dynamic recrystallization (DRX) takes place when FeMnSiCrNi shape memory alloy (SMA) is subjected to compression deformation at high temperatures. Cellular automaton (CA) simulation was used for revealing the DRX mechanism of FeMnSiCrNi SMA by predicting microstructures, grain size, flow stress, and dislocation density. The DRX of FeMnSiCrNi SMA has a characteristic of repeated nucleation and finite growth. The size of recrystallized grains increases with increasing deformation temperatures, but it decreases with increasing strain rates. The increase of deformation temperature leads to the decrease of the flow stress, whereas the increase in strain rate results in the increase of the flow stress. The dislocation density exhibits the same situation as the flow stress. The simulated results were supported by the experimental ones very well. Dislocation density is a crucial factor during DRX of FeMnSiCrNi SMA. It affects not only the nucleation but also the growth of the recrystallized grains. Occurrence of DRX depends on a critical dislocation density. The difference between the dislocation densities of the recrystallized and original grains becomes the driving force for the growth of the recrystallized grains, which lays a solid foundation for the recrystallized grains growing repeatedly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3