Enhanced Desilication of High Alumina Fly Ash by Combining Physical and Chemical Activation

Author:

Gong Yanbing,Sun Junmin,Sun Shu-Ying,Lu Guozhi,Zhang Ting-An

Abstract

In this work, a physical–chemical activation desilication process was proposed to extract silica from high alumina fly ash (HAFA). The effects of fly ash size, hydrochloric acid concentration, acid activation time, and reaction temperature on the desilication efficiency were investigated comprehensively. The phase and morphology of the original fly ash and desilicated fly ash were analyzed by X-ray diffraction (XRD) and scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM-EDS). Compared with the traditional desilication process, the physical–chemical activation desilication efficiency is further increased from 38.4% to 53.2% under the optimal conditions. Additionally, the kinetic rules and equations were confirmed by the experimental data fitting with shrinking core model of liquid–solid multiphase reaction. Kinetic studies show that the enhanced desilication process is divided into two processes, and both steps of the two-step reaction is controlled by chemical reaction, and the earlier stage activation energy is 52.05 kJ/mol and the later stage activation energy is 58.45 kJ/mol. The results of mechanism analysis show that physical activation breaks the link between the crystalline phase and the amorphous phase, and then a small amount of alkali-soluble alumina in the amorphous phase is removed by acid activation, thereby suppressing the generation of side reactions of the zeolite phase.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3