Author:
Apmann Kevin,Fulmer Ryan,Soto Alberto,Vafaei Saeid
Abstract
This review was focused on expressing the effects of base liquid, temperature, possible surfactant, concentration and characteristics of nanoparticles including size, shape and material on thermal conductivity and viscosity of nanofluids. An increase in nanoparticle concentration can lead to an increase in thermal conductivity and viscosity and an increase in nanoparticle size, can increase or decrease thermal conductivity, while an increase in nanoparticle size decreases the viscosity of the nanofluid. The addition of surfactants at low concentrations can increase thermal conductivity, but at high concentrations, surfactants help to reduce thermal conductivity of the nanofluid. The addition of surfactants can decrease the nanofluid viscosity. Increasing the temperature, increased the thermal conductivity of a nanofluid, while decreasing its viscosity. Additionally, the effects of material of nanoparticles on the thermal conductivity and viscosity of a nanofluid need further investigations. In the case of hybrid nanofluids, it was observed that nanofluids with two different particles have the same trend of behavior as nanofluids with single particles in the regard to changes in temperature and concentration. Additionally, the level of accuracy of existing theoretical models for thermal conductivity and viscosity of nanofluids was examined.
Subject
General Materials Science
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献