Highly Porous and Superabsorbent Biomaterial Made of Marine-Derived Polysaccharides and Ascorbic Acid as an Optimal Dressing for Exuding Wound Management

Author:

Vivcharenko VladyslavORCID,Wojcik MichalORCID,Palka KrzysztofORCID,Przekora AgataORCID

Abstract

There are many modern wound dressings that have promising properties for repairing skin damage. However, due to various types of wounds and the problems they cause, there is still a great demand for new, effective healing strategies. The aim of this study was to create superabsorbent wound dressing made of marine-derived polysaccharides (agarose and chitosan) using the freeze-drying method. The secondary goal was its comprehensive evaluation for potential use as an external superabsorbent bandage for wounds with high exudation. Due to the well-known positive effect of ascorbic acid (vitamin C) on the healing process, biomaterial enriched with vitamin C was prepared and compared to the variant without the addition of ascorbic acid. It was shown that the produced foam-like wound dressing had a very porous structure, which was characterized by hydrophilicity, allowing a large amount of human fluids to be absorbed. According to in vitro tests on human fibroblasts, biomaterial was nontoxic and supportive to cell proliferation. Vitamin C-enriched dressing also had the ability to significantly reduce matrix metalloproteinase-2 production and to promote platelet-derived growth factor-BB synthesis by fibroblasts, which is desired during chronic wound treatment. The material has features of the eco-friendly wound care product since it was made of naturally-derived polysaccharides and was proved to be biodegradable. Importantly, despite degradable character, it was stable in the chronic and infected wound microenvironment, maintaining high integrity after 8-week incubation in the enzymatic solutions containing lysozyme and collagenases. The obtained results clearly showed that developed biomaterial possesses all necessary features of the external dressing for the management of exudate from both acute and chronic non-healing wounds.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3