Experimental Evaluation of PSC Structures from FRP with a Prestressing Strengthening Method

Author:

Kim Tae-KyunORCID,Kim Sang-Hyun,Park Jong-Sup,Park Hee-BeomORCID

Abstract

A prestressed concrete (PSC) structure is subject to prestress losses in the long and short terms, and the structure ages over time. The structure is susceptible to corrosion from exposure to environmental factors such as moisture, chloride, and carbonation, thus causing prestress loss. Therefore, strengthening the structure is needed to address this problem. Here, the near surface mounted (NSM) method and the external prestressing (EP) method were selected because they are capable of applying additional prestressing. Further, we used fiber-reinforced plastics or polymers, or carbon fiber-reinforced plastics or polymers because of their high tensile strength and noncorrosive properties. For EP tests, prestressed strands were used. Accordingly, this study performs four-point flexural tests and evaluations for 12 types of specimens fabricated with different PSC methods. All specimens fabricated with the NSM (prestressing, no prestressing) and EP methods achieved stiffness that was 50–60% higher than that of the control PSC specimen. It was observed that the EP method in conjunction with prestressing yielded the best strengthening effect. It is expected that the results of this study will be applied to real structures for strengthening them and improving their performances.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3