Elevated Temperature Tensile Creep Behavior of Aluminum Borate Whisker-Reinforced Aluminum Alloy Composites (ABOw/Al–12Si)

Author:

Ji Yameng,Yuan Yanpeng,Zhang Weizheng,Xu Yunqing,Liu Yuwei

Abstract

In order to evaluate the elevated temperature creep performance of the ABOw/Al–12Si composite as a prospective piston crown material, the tensile creep behaviors and creep fracture mechanisms have been investigated in the temperatures range from 250 to 400 °C and the stress range from 50 to 230 MPa using a uniaxial tensile creep test. The creep experimental data can be explained by the creep constitutive equation with stress exponents of 4.03–6.02 and an apparent activation energy of 148.75 kJ/mol. The creep resistance of the ABOw/Al–12Si composite is immensely improved by three orders of magnitude, compared with the unreinforced alloy. The analysis of the ABOw/Al–12Si composite creep data revealed that dislocation climb is the main creep deformation mechanism. The values of the threshold stresses are 37.41, 25.85, and 17.36 at elevated temperatures of 300, 350 and 400 °C, respectively. A load transfer model was introduced to interpret the effect of whiskers on the creep rate of this composite. The creep test data are very close to the predicted values of the model. Finally, the fractographs of the specimens were analyzed by Scanning Electron Microscope (SEM), the fracture mechanisms of the composites at different temperatures were investigated. The results showed that the fracture characteristic of the ABOw/Al–12Si composite exhibited a macroscale brittle feature range from 300 to 400 °C, but a microscopically ductile fracture was observed at 400 °C. Additionally, at a low tensile creep temperature (300 °C), the plastic flow capacity of the matrix was poor, and the whisker was easy to crack and fracture. However, during tensile creep at a higher temperature (400 °C), the matrix was so softened that the whiskers were easily pulled out and interfacial debonding appeared.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3