Structural and Secondary Electron Yield Properties of Titanium–Palladium Films with Laser-Treated Copper Substrate for Application in Neutron Generators

Author:

Gao YongORCID,Wang Sheng,Wang Jie,You ZhimingORCID,Zhang Jing,Hu Yaocheng,Wu Yue,Fan Jiakun,Li Haipeng,Zhan Qin,Yang Hongguang,Xu Zhanglian

Abstract

Secondary electron emission (SEE) of the oxygen-free high-conductivity copper (OFHC) target surface in neutron generators limits the stability and improvement of the neutron yield. A novel-type target of titanium–palladium films coated on laser-treated OFHC target substrate was proposed and explored in this work to obtain low secondary electron yield (SEY) without introducing any components. The combination of Ti–Pd films and laser-treated OFHC substrate can effectively suppress secondary electron emission and enhance the adsorption ability to hydrogen isotopes with the existence of Pd film. The surface morphologies, surface chemical states, and SEYs of Ti–Pd films with laser-treated OFHC substrate were studied systematically for the first time. The XPS results showed that the laser-treated OFHC substrate surface was basically covered by Pd film. However, the Pd film surface was partially oxidized, with percentages of 21.31 and 10.02% for PdO and PdO2, respectively. The SEYs of Ti–Pd films with laser-treated OFHC substrate were all below 1 within the investigated primary energy range of 100–3000 eV, which would be sufficient for application in neutron generators. Specifically, the maximum SEY (δmax) of laser-treated OFHC substrate coated by Ti–Pd films was 0.87 with corresponding incident electron energy of 400 eV.

Funder

National Natural Science Foundation for the Youth of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3