Efficient Proximal Gradient Algorithms for Joint Graphical Lasso

Author:

Chen JieORCID,Shimmura Ryosuke,Suzuki JoeORCID

Abstract

We consider learning as an undirected graphical model from sparse data. While several efficient algorithms have been proposed for graphical lasso (GL), the alternating direction method of multipliers (ADMM) is the main approach taken concerning joint graphical lasso (JGL). We propose proximal gradient procedures with and without a backtracking option for the JGL. These procedures are first-order methods and relatively simple, and the subproblems are solved efficiently in closed form. We further show the boundedness for the solution of the JGL problem and the iterates in the algorithms. The numerical results indicate that the proposed algorithms can achieve high accuracy and precision, and their efficiency is competitive with state-of-the-art algorithms.

Funder

Grant-in-Aid for Scientific Research (KAKENHI) C

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference44 articles.

1. Graphical Models;Lauritzen,1996

2. High-dimensional graphs and variable selection with the Lasso

3. Model selection and estimation in the Gaussian graphical model

4. Sparse inverse covariance estimation with the graphical lasso

5. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data;Banerjee;J. Mach. Learn. Res.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3