TLR4 Expression in Ex-Lichenoid Lesions—Oral Squamous Cell Carcinomas and Its Surrounding Epithelium: The Role of Tumor Inflammatory Microenvironment

Author:

Visioli FernandaORCID,Nunes Julia Silveira,Pedicillo Maria Carmela,Leonardi Rosalia,Santoro AngelaORCID,Zannoni Gian FrancoORCID,Aquino Gabriella,Cerrone MargheritaORCID,Cantile MonicaORCID,Losito Nunzia Simona,Rodolico VitoORCID,Campisi GiuseppinaORCID,Colella GiuseppeORCID,De Stefano Ilenia SaraORCID,Ramunno Maria Antonietta,Pizzulli Cristina,Visconti Marco,Lo Muzio LorenzoORCID,Pannone Giuseppe

Abstract

Toll-like receptors (TLRs) regulate innate and adaptive immune responses. Moreover, TLRs can induce a pro-survival and pro-proliferation response in tumor cells. This study aims to investigate the expression of TLR4 in the epithelium surrounding oral squamous cell carcinomas (OSCC) in relation to its inflammatory microenvironment. This study included 150 human samples: 30 normal oral control (NOC), 38 non-lichenoid epithelium surrounding OSCC (NLE-OSCC), 28 lichenoid epithelium surrounding OSCC (LE-OSCC), 30 OSCC ex-non oral lichenoid lesion (OSCC Ex-NOLL), and 24 OSCC ex-oral lichenoid lesion (OSCC Ex-OLL). TLR4 expression was investigated by immunohistochemistry and the percentage of positive cells was quantified. In addition, a semiquantitative analysis of staining intensity was performed. Immunohistochemical analysis revealed that TLR4 is strongly upregulated in LE-OSCC as compared to normal control epithelium and NLE-OSCC. TLR4 expression was associated with the inflammatory environment, since the percentage of positive cells increases from NOC and NLE-OSCC to LE-OSCC, reaching the highest value in OSCC Ex–OLL. TLR4 was detected in the basal third of the epithelium in NLE-OSCC, while in LE-OSCC, TLR4 expression reached the intermediate layer. These results demonstrated that an inflammatory microenvironment can upregulate TLR4, which may boost tumor development.

Funder

University of Foggia

Progetto PRA University of Foggia

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3