Abstract
In this paper, an adaptive incremental neural network (INN) fixed-time tracking control scheme based on composite learning is investigated for robot systems under input saturation. Firstly, by integrating the composite learning method into the INN to cope with the inevitable dynamic uncertainty, a novel adaptive updating law of NN weights is designed, which does not need to satisfy the stringent persistent excitation (PE) conditions. In addition, for the saturated input, differing from adding the auxiliary system, this paper introduces a hyperbolic tangent function to deal with the saturation nonlinearity by converting the asymmetric input constraints into the symmetric ones. Moreover, the fixed-time control approach and Lyapunov theory are combined to ensure that all the signals of the robot closed-loop control systems converge to a small neighborhood of the origin in a fixed time. Finally, numerical simulation results verify the effectiveness of the fixed-time control and composite learning algorithm.
Funder
National Nature Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Industrial Key Technologies R \ D Program of Foshan
Subject
Control and Optimization,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献