Fixed-Time Incremental Neural Control for Manipulator Based on Composite Learning with Input Saturation

Author:

Fan Yanli,Huang Haiqi,Yang ChenguangORCID

Abstract

In this paper, an adaptive incremental neural network (INN) fixed-time tracking control scheme based on composite learning is investigated for robot systems under input saturation. Firstly, by integrating the composite learning method into the INN to cope with the inevitable dynamic uncertainty, a novel adaptive updating law of NN weights is designed, which does not need to satisfy the stringent persistent excitation (PE) conditions. In addition, for the saturated input, differing from adding the auxiliary system, this paper introduces a hyperbolic tangent function to deal with the saturation nonlinearity by converting the asymmetric input constraints into the symmetric ones. Moreover, the fixed-time control approach and Lyapunov theory are combined to ensure that all the signals of the robot closed-loop control systems converge to a small neighborhood of the origin in a fixed time. Finally, numerical simulation results verify the effectiveness of the fixed-time control and composite learning algorithm.

Funder

National Nature Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Industrial Key Technologies R \ D Program of Foshan

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3