An Improved Dynamic Model and Matrix Displacement Model for Distributed-Compliance Bridge-Type Amplification Mechanism

Author:

Li Peixing,Zhu Helei,Lai Leijie

Abstract

This paper establishes a matrix displacement model and an improved dynamic model for the static and dynamic performances analysis for a kind of bridge-type displacement amplification mechanism with distributed-compliance, which has better performances than traditional lumped-compliance bridge-type mechanisms. In the matrix displacement model, the stiffness matrix for two rigid bodies connected by flexures is first obtained by regarding the displacements and the forces on two mass centers of the rigid bodies as the node displacements and node forces. By extending and superimposing each elemental stiffness matrix, the global stiffness matrix for the flexure mechanism can be obtained to calculate the displacement amplification ratio and input stiffness of the bridge-type mechanism. In the improved dynamic model, in order to establish the Lagrangian dynamic model more accurately, the deflectional, axial, and rotational velocities of any point on the beam flexure are calculated by solving the derivatives of the deformation curves of beam flexures versus time to obtain the expression of the kinetic energy in the vibrating beams. On this basis, the three-degree-of-freedom vibration differential equation for the bridge-type mechanism is established by using the Lagrange method, and the natural frequency in the working direction is obtained accurately. The presented models are compared with the finite element analysis, and experiments for two case studies of the bridge-type distributed-compliance mechanism are presented. The comparisons results demonstrate the high prediction accuracy of the improved dynamic model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

State Key Laboratory of Mechanical System and Vibration

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3