Far-Field Radiation Characteristics of Folded Monopole Antennas over a Conducting Ground Plane

Author:

Maxworth AshanthiORCID

Abstract

Folded monopole structures have been used for many applications, including low-frequency electromagnetic wave transmission and reception. However, the literature on these antenna types is quite limited. Folded monopole antennas are mathematically complex compared to conventional monopole or dipole antennas since every fold introduces a new set of design parameters. This work studied the far-field radiation characteristics of multi-folded monopole antennas operating at 75 MHz in terms of their radiated power concerning the frequency, the far-field directivity of the electric field, and the effect of each design parameter on the far-field radiation power. According to the results, folding a monopole antenna multiple times increases its effective length, making this antenna a suitable candidate for applications where the antenna height is restricted. Additionally, the ground-to-wire separation has the biggest effect on radiated power. In both single-fold and two-fold cases, doubling the ground-to-wire separation increased the radiated power by 0.2 W compared to the other models with the same number of folds. As for the challenges, the impedance mismatch between the source and antenna causes a significant amount of power reflection; hence, suitable impedance matching is required to reduce reflected power.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference20 articles.

1. Antenna Theory: Analysis and Design;Balanis,1982

2. Antennas for All Applications;Kraus,2002

3. Antenna Theory and Design;Stutzman,2012

4. EXOS-B/Siple Station VLF Wave-Particle Interaction Experiments: 2. Transmitter signals and associated emissions

5. Siple station experiments on wave-particle interactions in the magnetosphere;Helliwell,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3