Semi-Automated Mapping of Complex-Terrain Mountain Glaciers by Integrating L-Band SAR Amplitude and Interferometric Coherence

Author:

Zhang BoORCID,Liu Guoxiang,Wang XiaowenORCID,Fu Yin,Liu QiaoORCID,Yu Bing,Zhang RuiORCID,Li Zhilin

Abstract

Mapping the outlines of glaciers has primarily relied on the interpretation of satellite optical images. However, the accurate delineation of glaciers in complex terrain mountain regions remains challenging, mainly because the supraglacial debris-covered ablation zones and snow-covered accumulation zones often exhibit the same spectral properties as their adjacent grounds in optical images. This study presents a novel approach by exploring both the satellite synthetic aperture radar (SAR) amplitude and interferometric coherence to map mountain glaciers. This method explores the deviation of the glacier surface signal in the SAR time series to distinguish glacier ice from the surrounding stable ground. To this end, we explored the classifying capabilities of two indices from a set of SAR images, SAR interferometric coherence and amplitude deviation index (ADI), to determine glacier boundary. We found that the two indices complement each other for mapping glaciers. A ratio map based on ADI and SAR coherence (ACR) was then derived, from which the glacier outline was automatically tracked using a specified threshold, followed by manual modification. We validated this approach on two typical valley glaciers, the debris-covered Hailuogou Glacier and debris-free Mozigou Glacier, in Mount Gongga in the southeastern Tibetan Plateau. The results show that the proposed ACR criteria can significantly enhance the contrast between glaciers and their surroundings. By comparing our results with manually delineated glacier outlines from high-resolution cloud-free satellite optical imagery, we found that the misclassification rate and difference rate for our results were 2.6% and 4.2%, respectively. The approach presented in this study can be easily adapted to map the outlines of mountain glaciers worldwide efficiently and is useful for inferring glacier boundary changes in a climate warming context.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3