Characterization of a Contaminated Site Using Hydro-Geophysical Methods: From Large-Scale ERT Surface Investigations to Detailed ERT and GPR Cross-Hole Monitoring

Author:

Pavoni Mirko1,Boaga Jacopo1ORCID,Peruzzo Luca1,Barone Ilaria1ORCID,Mary Benjamin2,Cassiani Giorgio1ORCID

Affiliation:

1. Department of Geosciences, University of Padova, 35100 Padova, Italy

2. Tec4Agro Group, Institute of Agricultural Sciences—CSIC, 28006 Madrid, Spain

Abstract

This work presents the results of an advanced geophysical characterization of a contaminated site, where a correct understanding of the dynamics in the unsaturated zone is fundamental to evaluate the effective management of the remediation strategies. Large-scale surface electrical resistivity tomography (ERT) was used to perform a preliminary assessment of the structure in a thick unsaturated zone and to detect the presence of a thin layer of clay supporting an overlying thin perched aquifer. Discontinuities in this clay layer have an enormous impact on the infiltration processes of both water and solutes, including contaminants. In the case here presented, the technical strategy is to interrupt the continuity of the clay layer upstream of the investigated site in order to prevent most of the subsurface water flow from reaching the contaminated area. Therefore, a deep trench was dug upstream of the site and, in order to evaluate the effectiveness of this approach in facilitating water infiltration into the underlying aquifer, a forced infiltration experiment was carried out and monitored using ERT and ground-penetrating radar (GPR) measurements in a cross-hole time-lapse configuration. The results of the forced infiltration experiment are presented here, with a particular emphasis on the contribution of hydro-geophysical methods to the general understanding of the subsurface water dynamics at this complex site.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3