A Flexible Multivariate Distribution for Correlated Count Data

Author:

Sellers Kimberly F.ORCID,Li Tong,Wu Yixuan,Balakrishnan NarayanaswamyORCID

Abstract

Multivariate count data are often modeled via a multivariate Poisson distribution, but it contains an underlying, constraining assumption of data equi-dispersion (where its variance equals its mean). Real data are oftentimes over-dispersed and, as such, consider various advancements of a negative binomial structure. While data over-dispersion is more prevalent than under-dispersion in real data, however, examples containing under-dispersed data are surfacing with greater frequency. Thus, there is a demonstrated need for a flexible model that can accommodate both data types. We develop a multivariate Conway–Maxwell–Poisson (MCMP) distribution to serve as a flexible alternative for correlated count data that contain data dispersion. This structure contains the multivariate Poisson, multivariate geometric, and the multivariate Bernoulli distributions as special cases, and serves as a bridge distribution across these three classical models to address other levels of over- or under-dispersion. In this work, we not only derive the distributional form and statistical properties of this model, but we further address parameter estimation, establish informative hypothesis tests to detect statistically significant data dispersion and aid in model parsimony, and illustrate the distribution’s flexibility through several simulated and real-world data examples. These examples demonstrate that the MCMP distribution performs on par with the multivariate negative binomial distribution for over-dispersed data, and proves particularly beneficial in effectively representing under-dispersed data. Thus, the MCMP distribution offers an effective, unifying framework for modeling over- or under-dispersed multivariate correlated count data that do not necessarily adhere to Poisson assumptions.

Publisher

MDPI AG

Reference24 articles.

1. Discrete Multivariate Distributions;Johnson,1997

2. Multivariate binomial and Poisson distributions;Krishnamoorthy;Sankhyā Indian J. Stat.,1951

3. A Note on Regression in the Multivariate Poisson Distribution

4. On the multivariate poisson distribution

5. Modeling Count Data

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3