Growth Performance of Mytilus galloprovincialis Lamarck, 1819 under an Innovative Integrated Multi-Trophic Aquaculture System (IMTA) in the Mar Grande of Taranto (Mediterranean Sea, Italy)

Author:

Arduini Daniele12ORCID,Portacci Giuseppe3,Giangrande Adriana124ORCID,Acquaviva Maria Immacolata3,Borghese Jacopo12ORCID,Calabrese Claudio1ORCID,Giandomenico Santina3,Quarta Elisa3,Stabili Loredana13

Affiliation:

1. Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTEBA), Università del Salento, 73100 Lecce, Italy

2. Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), 00196 Rome, Italy

3. Istituto di Ricerca sulle Acque (IRSA), Consiglio Nazionale delle Ricerche (CNR), 74123 Taranto, Italy

4. National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

Abstract

The cultivation of the Mediterranean mussel, Mytilus galloprovincialis Lamarck, 1819, has been tested in an innovative Integrated Multitrophic Aquaculture system (IMTA) in the Mar Grande of Taranto, as part of the EU-funded Remedialife project. This farming method could solve several problems including the low growth rate in mesotrophic environments while reducing the environmental impact of fish mariculture. Three productive cycles have been carried out. The first (2018–2019, traditional experiment) was conducted in three long lines around six cages of the fish farm in order to evaluate total mussel production under the innovative IMTA system and quality for human consumption by analyzing the concentration of culturable heterotrophic bacteria, total and fecal coliforms, Escherichia coli and Salmonella spp. in mussel tissues. In addition, 17 polycyclic aromatic hydrocarbons (PAHs), including 16 EPA priority compounds and seven polychlorinated biphenyls (PCBs), which are indicators of PCB contamination in the environment, were analyzed using gas chromatography in conjunction with a mass spectrometer. The second cycle (2020–2021, horizontal distance experiment) aimed to test the influence of fish cages on mussel growth by placing mussels near and far from the fish cages. The third cycle (2021–2022, vertical distance experiment) aimed to overcome the phenomenon of “heat waves” that can occur in the Mar Grande of Taranto during summer by testing the growth performance of mussels at two different depths (1 and 12 m). The following parameters were measured: Shell Length, L (mm); Shell Dry Weight, SDW (g); Flesh Dry Weight, FDW (g); Condition Index, IC = FDW/SDW. The results showed that the best growth performance was obtained near the fish cages and at a depth of 12 m. Moreover, the indicators of microbial contamination and concentrations of chemical compounds analyzed in mussel tissues cultured under the innovative IMTA system were in compliance with the reference values of European regulations.

Funder

EUROPEAN COMMUNITY

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3