Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis-Fourier Transform Infrared (TG-FTIR) and Calorimeter

Author:

Wang Zhi,Wei Ruichao,Wang Xuehui,He Junjiang,Wang JianORCID

Abstract

To fill the shortages in the knowledge of the pyrolysis and combustion properties of new and aged polyvinyl chloride (PVC) sheaths, several experiments were performed by thermogravimetric analysis (TG), Fourier transform infrared (FTIR), microscale combustion calorimetry (MCC), and cone calorimetry. The results show that the onset temperature of pyrolysis for an aged sheath shifts to higher temperatures. The value of the main derivative thermogravimetric analysis (DTG) peak of an aged sheath is greater than that of a new one. The mass of the final remaining residue for an aged sheath is also greater than that of a new one. The gas that is released by an aged sheath is later but faster than that of a new one. The results also show that, when compared with a new sheath, the heat release rate (HRR) is lower for an aged one. The total heat release (THR) of aged sheath is reduced by 16.9–18.5% compared to a new one. In addition, the cone calorimetry experiments illustrate that the ignition occurrence of an aged sheath is later than that of a new one under different incident heat fluxes. This work indicates that an aged sheath generally pyrolyzes and it combusts more weakly and incompletely.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3