Abstract
In this work, TiO2 photocatalysts, co-doped with transition metal ions vanadium (V) and cobalt (Co) ((V,Co)–TiO2), were synthesized by the sol–gel method. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and desorption measurement, UV-Vis absorption and photoluminescence spectrum (PL) spectra. The results show that V and Co co-doping has significant effects on sample average crystalline grain size, absorption spectrum, recombination efficiency of photo-induced electron-hole pairs (EHPs), and photocatalytic degradation efficiency of methylene blue (MB). (V,Co)–TiO2 photocatalyst exhibits an obvious red shift of the absorption edge to 475 nm. Photocatalytic degradation rate of (V,Co)–TiO2 sample for MB in 60 min is 92.12% under a Xe lamp with a cut-off filter (λ > 400 nm), which is significantly higher than 56.55% of P25 under the same conditions. The first principles calculation results show that V and Co ions doping introduces several impurity energy levels, which can modulate the location of the valence band and conduction band. An obvious lattice distortion is produced in the meantime, resulting in the decrease in photo-generated EHP recombination. Thus, (V,Co)–TiO2 photocatalyst performance is significantly improved.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献