Microstructure of High-Performance Aluminum Alloy Surface Processed by the Single-Excitation Same-Frequency Longitudinal–Torsional Coupled Ultrasonic Vibration Milling

Author:

Zhao Chongyang,Wang Xiaobo,Zhao Bo,Jiao Feng

Abstract

The high performance of parts is determined by the microstructure of the machined surface to some extent. Different processing methods have been used to construct different microstructures on machined surfaces; the effective improvement of the serviceability of parts has been the focus of research in the field of precision and ultra-precision machining. In the presented work, a microscratch was formed on the machined surface in ultrasonic assisted machining, and the surface microstructure of high-performance aluminum alloy processed by single-excitation rotational longitudinal–torsional coupled ultrasonic vibration (LTCUV) milling was investigated. First, the motion paths model of the cutting edge in the LTCUV milling were established; then, the single-excitation LTCUV milling system has been set up, and the acoustic performance of the LTCUV system was examined. The surface microstructure of aluminum alloy was processed by different machining techniques, and the effect of processing parameters on the surface microstructure and performance were investigated by the orthogonal design of experiment (DOE). The surface roughness was found to be proportional to the ultrasonic cutting speed and feeding rate. The surface roughness was mainly controlled by the ultrasonic amplitude, and the optimal surface quality corresponded to the ultrasonic amplitude of 4 μm. The cutting speed contributes greatly to the surface roughness. The water contact angle of surfaces obtained by ultrasonic processing was larger than that of surfaces achieved by the conventional processing, while the surface water contact angle was negatively related to the ultrasonic amplitude. Once the rotation speed exceeded a critical level, the ultrasonic amplitude exerted a negligible effect on the surface water contact angle. The cutting speed contributes the most to the water contact angle. The friction coefficients of surfaces treated by ultrasonic processing were lower than those obtained by conventional processing at constant processing parameters, while the friction coefficient was minimized at the ultrasonic amplitude of 4 μm. In the case of grease lubrication friction, the surface wear decreased with the ultrasonic amplitude, indicating the improved wear resistance of the processed surfaces. Similarly, the ultrasonic amplitude has the highest contribution rate to friction and wear.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3