LiDAR Point Cloud Data Combined Structural Analysis Based on Strong Form Meshless Method Using Essential Boundary Condition Capturing

Author:

Seo Kyung-Wan1,Yoon Young-Cheol2ORCID,Lee Sang-Ho1

Affiliation:

1. Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea

2. Department of Civil Engineering, Myongji College, Seoul 03656, Republic of Korea

Abstract

This study proposes a novel hybrid simulation technique for analyzing structural deformation and stress using light detection and ranging (LiDAR)-scanned point cloud data (PCD) and polynomial regression processing. The method estimates the edge and corner points of the deformed structure from the PCD. It transforms into a Dirichlet boundary condition for the numerical simulation using the particle difference method (PDM), which utilizes nodes only based on the strong formulation, and it is advantageous for handling essential boundaries and nodal rearrangement, including node generation and deletion between analysis steps. Unlike previous studies, which relied on digital images with attached targets, this research uses PCD acquired through LiDAR scanning during the loading process without any target. Essential boundary condition implementation naturally builds a boundary value problem for the PDM simulation. The developed hybrid simulation technique was validated through an elastic beam problem and a three-point bending test on a rubber beam. The results were compared with those of ANSYS analysis, showing that the technique accurately approximates the deformed edge shape leading to accurate stress calculations. The accuracy improved when using a linear strain model and increasing the number of PDM model nodes. Additionally, the error that occurred during PCD processing and edge point extraction was affected by the order of polynomial regression equation. The simulation technique offers advantages in cases where linking numerical analysis with digital images is challenging and when direct mechanical gauge measurement is difficult. In addition, it has potential applications in structural health monitoring and smart construction involving machine leading techniques.

Funder

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3