Study on Phase Characteristics of Wind Pressure Fields around a Prism Using Complex Proper Orthogonal Decomposition

Author:

Murakami Tomoyuki12,Nishida Yuichiro2,Taniguchi Tetsuro2

Affiliation:

1. General Building Research Corporation of Japan, Osaka 565-0873, Japan

2. Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan

Abstract

Wind loads for the design of wind-resistant high-rise buildings are generally evaluated based on spectral modal analysis or time-history response analysis using wind pressure data obtained from wind tunnel experiments with rigid models. The characteristics of the fluctuating wind pressures around vibrating buildings must be evaluated for relevant wind-resistant designs because the wind pressures around buildings are affected by their vibrations. One of the methods to investigate fluctuating fields is complex proper orthogonal decomposition (CPOD), which can express complicated pressure fields, including advection phenomena, as coherent structures. This paper presents the phase characteristics of fluctuating wind pressures around rigid and elastic models of a square-sectioned prism evaluated via CPOD analysis using the results of wind tunnel experiments. The evaluation procedure for the symmetricity of the fluctuating wind pressure modes obtained via CPOD is presented. The similarity of fluctuating wind pressure fields is evaluated as the congruency of the planes formed by the 1st- and 2nd-eigenmodes. With symmetricity and similarity, the fluctuating wind pressure fields are classified into three types: resonant and non-resonant states in smooth flow, and in gradient flow. The characteristics of the three types of wind pressure fields are shown, respectively, in the symmetric and anti-symmetric modes.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3