Tourist Arrival Forecasting Using Multiscale Mode Learning Model

Author:

He KaijianORCID,Wu Don,Zou Yingchao

Abstract

The forecasting of tourist arrival depends on the accurate modeling of prevalent data patterns found in tourist arrival, especially for daily tourist arrival, where tourist arrival changes are more complex and highly nonlinear. In this paper, a new multiscale mode learning-based tourist arrival forecasting model is proposed to exploit different multiscale data features in tourist arrival movement. Two popular Mode Decomposition models (MD) and the Convolutional Neural Network (CNN) model are introduced to model the multiscale data features in the tourist arrival data The data patterns at different scales are extracted using these two different MD models which dynamically decompose tourist arrival into the distinctive intrinsic mode function (IMF) data components. The convolutional neural network uses the deep network to further model the multiscale data structure of tourist arrivals, with the reduced dimensionality of key multiscale data features and finer modeling of nonlinearity in tourist arrival. Our empirical results using daily tourist arrival data show that the MD-CNN tourist arrival forecasting model significantly improves the forecasting reliability and accuracy.

Funder

National Natural Science Foundation of China

Humanities and Social Sciences Youth foundation of Ministry of Education of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3