An Extrinsic Approach Based on Physics-Informed Neural Networks for PDEs on Surfaces

Author:

Tang Zhuochao,Fu ZhuojiaORCID,Reutskiy Sergiy

Abstract

In this paper, we propose an extrinsic approach based on physics-informed neural networks (PINNs) for solving the partial differential equations (PDEs) on surfaces embedded in high dimensional space. PINNs are one of the deep learning-based techniques. Based on the training data and physical models, PINNs introduce the standard feedforward neural networks (NNs) to approximate the solutions to the PDE systems. Using automatic differentiation, the PDEs information could be encoded into NNs and a loss function. To deal with the surface differential operators in the loss function, we combine the extrinsic approach with PINNs and then express that loss function in extrinsic form. Subsequently, the loss function could be minimized extrinsically with respect to the NN parameters. Numerical results demonstrate that the extrinsic approach based on PINNs for surface problems has good accuracy and higher efficiency compared with the embedding approach based on PINNs. In addition, the strong nonlinear mapping ability of NNs makes this approach robust in solving time-dependent nonlinear problems on more complex surfaces.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3