A Thermal-Hydrological-Mechanical-Chemical Coupled Mathematical Model for Underground Coal Gasification with Random Fractures

Author:

Zhang ZhizhenORCID,Yang Xiao,Shang Xiaoji,Yang Huai

Abstract

In this paper, in order to understand the development process and influencing factors of coal underground gasification, taking the two-dimensional underground gasification area of the plane as the simulation object, the characteristics of the multi-physical field coupling process of exudate mass heat transfer and combustion gasification reaction in the process of horizontal coal seam underground gasification are analyzed, and a two-dimensional mathematical model of thermal-hydrological-mechanical-chemical coupling of a porous medium is established. The temperature distribution of coal rock from the gasification point, the distribution of gas water vapor pressure and stress-strain, the temperature contour distribution of fractured coal rocks of different densities of heterogeneity, and the influence of different water-oxygen ratios and different fractured coal rocks on the gas components generated by the gasification reaction were studied. The results show that the tensile damage caused by the tensile strain volume expansion of the coal underground gasification center, the shear damage caused by the compression of the edge compressive strain volume, and the temperature conduction rate decrease with the increase in the coal rock fracture, but in the heterogeneous coal rock, the greater the fracture density, the faster the temperature conduction rate, which has a certain impact on the gasification combustion reaction. The ratio of CO2, H2 and CO in the case of simulating that the water-to-oxygen ratio is 1:2, 1:1, and 2:1 is 1:0.85:0.73, 1:1.1:0.97, and 1:1.76:1.33, respectively. At a water-oxygen ratio of 2:1, the concentration ratio is the most ideal, and the main gases, CO, CO2, and H2, are 32%, 21%, and 37%. Furthermore, the reaction rate increases with the increase of fracture density. The gas component concentration simulated in this paper has good consistency with the results of the previous experimental data, which has important guiding significance for the underground coal gasification project.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Science and Technology Innovation Base Joint Open Fund Project of Liaoning Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3