The Development of PSO-ANN and BOA-ANN Models for Predicting Matric Suction in Expansive Clay Soil

Author:

Davar SaeedORCID,Nobahar MasoudORCID,Khan Mohammad Sadik,Amini Farshad

Abstract

Disasters have different shapes, and one of them is sudden landslides, which can put the safety of highway users at risk and result in crucial economic damage. Along with the risk of human losses, each day a highway malfunctions causes high expenses to citizens, and repairing a failed highway is a time- and cost-consuming process. Therefore, correct highway functioning can be categorized as a high-priority reliability factor for cities. By detecting the failure factors of highway embankment slopes, monitoring them in real-time, and predicting them, managers can make preventive, preservative, and corrective operations that would lead to continuing the function of intracity and intercity highways. Expansive clay soil causes many infrastructure problems throughout the United States, and much of Mississippi’s highway embankments and fill slopes are constructed of this clay soil, also known as High-Volume Change Clay Soil (HVCCS). Landslides on highway embankments are caused by recurrent volume changes due to seasonal moisture variations (wet-dry cycles), and the moisture content of the HVCCS impacts soil shear strength in a vadose zone. Soil Matric Suction (SMS) is another indication of soil shear strength, an essential element to consider. Machine learning develops high-accuracy models for predicting the SMS. The current work aims to develop hybrid intelligent models for predicting the SMS of HVCCS (known as Yazoo clay) based on field instrumentation data. To achieve this goal, six Highway Slopes (HWS) in Jackson Metroplex, Mississippi, were extensively instrumented to track changes over time, and the field data was analyzed and generated to be used in the proposed models. The Artificial Neural Network (ANN) with a Bayesian Regularization Backpropagation (BR-BP) training algorithm was used, and two intelligent systems, Particle Swarm Optimization (PSO) and Butterfly Optimization Algorithm (BOA) were developed to optimize the ANN-BR algorithm for predicting the HWS’ SMS by utilizing 13,690 data points for each variable. Several performance indices, such as coefficient of determination (R2), Mean Square Error (MSE), Variance Account For (VAF), and Regression Error Characteristic (REC), were also computed to analyze the models’ accuracy in prediction outcomes. Based on the analysis results, the PSO-ANN outperformed the BOA-ANN, and both had far better performance than ANN-BR. Moreover, the rainfall had the highest impact on SMS among all other variables and it should be carefully monitored for landslide prediction HWS. The proposed hybrid models can be used for SMS prediction for similar slopes.

Funder

Mississippi Department of Transportation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference56 articles.

1. Light commercial construction on Yazoo clay;Douglas;Forensic Eng.,2000

2. State Study 151 and 236: Yazoo Clay Investigation;Lee,2012

3. Performance Evaluation of Highway Slopes on Yazoo Clay,2020

4. Importance of variability in initial soil moisture and rainfalls on slope stability

5. Shear Strength of Compacted Soil under Infiltration Condition

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3