Limit Cycles and Integrability of a Class of Quintic System

Author:

Tang Yanli,Zhang Dongmei,Li FengORCID

Abstract

In this paper, a class of quintic systems is investigated. The first 13 focal values are computed with the aid of MATHEMATICA. Then the necessary conditions of integrability and linearizability are obtained and the sufficiency of every condition is proved. Meanwhile, bifurcation of limit cycles is discussed, 13 limit cycles can be bifurcated from the origin. As far as the number of limit cycles enclosing an isolated singular point is concerned, this is so far the best result for elementary singular points.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center;Bautin;Mat. Sb. (N.S.),1952

2. A Cubic System with Eight Small-Amplitude Limit Cycles

3. Symbolic computation of limit cycles associated with Hilbert’s 16th problem

4. AN APPLICATION OF REGULAR CHAIN THEORY TO THE STUDY OF LIMIT CYCLES

5. A cubic differential system with nine limit cycles;Lloyd;J. Appl. Anal. Comput.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3