Abstract
A great loss of transportation capacity has been caused in auto parts supply logistics due to the independent transportation from auto parts suppliers (APSs) to the automobile production line (APL). It is believed that establishing distribution centers (DCs) for centralized collection and unified distribution is one effective way to address this problem. This paper proposes a unified framework simultaneously considering the location-inventory-routing problem (LIRP) in auto parts supply logistics. Integrating the idea of sustainable development, a multi-objective MIP model is developed to determine the location and inventory capacity of DCs and routing decisions to minimize the total system cost and carbon emissions while concerning multi-period production demand. In addition, a robust optimization model is developed further in the context of uncertain demand. Numerical experiments and sensitivity analyses are conducted to verify the effectiveness of our proposed deterministic and robust models. The results show that synergistically optimizing the location and capacity of DCs and routing decisions are beneficial in reducing total system cost and carbon emissions. The analysis can provide guidelines to decision-makers for the effective management of auto parts supply logistics.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province
FAW Technology Innovation Project
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献