Using Matlab/Simulink Software Package to Investigate Fault Behaviors in HVDC System

Author:

Ikotun OlumorotiORCID,Agyekum Ephraim BonahORCID,Ahmed Emad M.,Kamel SalahORCID

Abstract

Existing studies show that several performance issues will arise in the HVDC link during the three phase-to-ground fault at the side of the inverter and that the DC voltage will oscillate around zero and will not affect the rectifier of the AC system though the inverter of the AC system, and the AC voltages will become zero and the AC currents will show high amplitude as well as minor disturbances. It has also been argued that when the fault is applied on a single-phase to ground fault at the inverter side on the AC side, the voltage will decrease. In this paper, we focus on single line-to-ground fault, double line-to-ground fault, and three phase-to-ground fault at the inverter of the AC system and their behavior on the DC link as well as on the AC system of the rectifier with detailed simulations. A high voltage direct current (HVDC) Monopolar system is modeled using a Matlab/Simulink software package for the research. The results show that during the three phase-to-ground fault at the AC system of the inverter, the DC voltage will increase with a bogus waveform and the currents of the AC system at the rectifier will collapse to zero.At the double phase-to-ground fault level, the DC voltage will experience an increase in waveform while the currents of the AC system of the rectifier will experience different disturbances. At the single phase-to-ground fault level, the DC voltage will remain stable and the rectifier side of the AC system will also experience a stable state for both currents and voltages.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. A novel time-domain method for fault detection and classification in VSC-HVDC transmission lines

2. Analysis of the Impact of AC Faults and DC Faults on the HVDC Transmission Line;Singh,2022

3. Bayesian Regularization Neural Network-Based Fault Detection System in HVDC Transmission System;Londhe,2022

4. A frequency spectrum-based method for detecting and classifying faults in HVDC systems

5. Fault Identification Method of HVDC Transmission Line based on t-SNE;Chen;Int. Core J. Eng.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3