On the Forced Vibration of Bending-Torsional-Warping Coupled Thin-Walled Beams Carrying Arbitrary Number of 3-DoF Spring-Damper-Mass Subsystems

Author:

Chen JunORCID,Liu Xiang

Abstract

This paper presents an analytical transfer matrix modeling framework for the forced vibration of a bending-torsional-warping coupling Euler-Bernoulli thin-walled beam carrying an arbitrary number of three degree-of-freedom (DOF) spring-damper-mass (SDM) subsystems. The thin-walled beam is divided into a series of distinct sub-beams whose ends are connected to the SDM subsystems. The transfer matrix for each sub-beam is developed based on the exact shape functions of the bending-torsional-warping coupling Euler-Bernoulli theory. Each SDM system is modelled by a set of effective springs based on the dynamic condensation method. The governing matrix equation is formulated based on the compatibility conditions of the placement and the force at the common interfaces of two adjacent sub-beams. Then, a closed-form expression for the frequency response function of the thin-walled beam system is proposed. The results computed by the proposed method achieve good agreement with those obtained by the conventional finite-element method, which shows the accuracy and reliability of the proposed method. The effects of the system parameters on the vibration transmission and vibration isolation properties of the thin-walled beam system are studied. The presented method can simultaneously consider arbitrary number of SDM subsystems and boundary conditions. Furthermore, none of the associated matrices are larger than 12 × 12, which provides a significant computational advantage.

Funder

science and technology innovation Program of Hunan Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3