Research on Vibration Propagation Law and Dynamic Effect of Bench Blasting

Author:

He Lu,Kong Dezhong,Lei Zhen

Abstract

To address the problem of damage to adjacent buildings (structures) caused by bench blasting construction, blasting in a sand and gravel mine in Guizhou Province was used as the background. Through on-site monitoring and numerical simulation, the blasting vibration propagation law and dynamic effect characteristics under the joint action of different bench heights and horizontal distances were studied. The regression model was established. The results show that: the peak vibration speed in all three directions with the increase in the horizontal distance of the burst center is a decaying trend, and the field measurements are basically consistent with the safe vibration speed and do not exceed 1.5 cm/s, so the house is in a safe state; shear stress with the increase in the horizontal distance of the burst center strictly decays, so the source of the shear stress and vibration speed decay faster in the near zone, with the slow decay in the far zone; analysis found that the shear stress and vibration speed are quadratic and exponential. Through the analysis of the regression model, it is obtained that there is no co-linearity among the influencing factors, which has a significant effect on the regression equation and regression coefficient, and so the multiple linear regression equation fits well. The model can predict the blast vibration intensity, which can be used as a safety criterion for buildings under the action of blasting, and provides a reference for blast vibration control, hole network parameters, and the design index.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3