Development of Predictive Models for Determination of the Extent of Damage in Granite Caused by Thermal Treatment and Cooling Conditions Using Artificial Intelligence

Author:

Khan Naseer MuhammadORCID,Cao Kewang,Emad Muhammad ZakaORCID,Hussain SajjadORCID,Rehman Hafeezur,Shah Kausar Sultan,Rehman Faheem UrORCID,Muhammad Aamir

Abstract

Thermal treatment followed by subsequent cooling conditions (slow and rapid) can induce damage to the rock surface and internal structure, which may lead to the instability and failure of the rock. The extent of the damage is measured by the damage factor (DT), which can be quantified in a laboratory by evaluating the changes in porosity, elastic modulus, ultrasonic velocities, acoustic emission signals, etc. However, the execution process for quantifying the damage factor necessitates laborious procedures and sophisticated equipment, which are time-consuming, costly, and may require technical expertise. Therefore, it is essential to quantify the extent of damage to the rock via alternate computer simulations. In this research, a new predictive model is proposed to quantify the damage factor. Three predictive models for quantifying the damage factors were developed based on multilinear regression (MLR), artificial neural networks (ANNs), and the adoptive neural-fuzzy inference system (ANFIS). The temperature (T), porosity (ρ), density (D), and P-waves were used as input variables in the development of predictive models for the damage factor. The performance of each predictive model was evaluated by the coefficient of determination (R2), the A20 index, the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the variance accounted for (VAF). The comparative analysis of predictive models revealed that ANN models used for predicting the rock damage factor based on porosity in slow conditions give an R2 of 0.99, A20 index of 0.99, RMSE of 0.01, MAPE of 0.14, and a VAF of 100%, while rapid cooling gives an R2 of 0.99, A20 index of 0.99, RMSE of 0.02, MAPE of 0.36%, and a VAF of 99.99%. It has been proposed that an ANN-based predictive model is the most efficient model for quantifying the rock damage factor based on porosity compared to other models. The findings of this study will facilitate the rapid quantification of damage factors induced by thermal treatment and cooling conditions for effective and successful engineering project execution in high-temperature rock mechanics environments.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3