Exploring the Real-Time WRF Forecast Skill for Four Tropical Storms, Isaias, Henri, Elsa and Irene, as They Impacted the Northeast United States

Author:

Khaira Ummul1,Astitha Marina1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA

Abstract

Tropical storm Isaias (2020) moved quickly northeast after its landfall in North Carolina and caused extensive damage to the east coast of the United States, with electric power distribution disruptions, infrastructure losses and significant economic and societal impacts. Improving the real-time prediction of tropical storms like Isaias can enable accurate disaster preparedness and strategy. We have explored the configuration, initialization and physics options of the Weather Research and Forecasting (WRF) model to improve the deterministic forecast for Isaias. The model performance has been evaluated based on the forecast of the storm track, intensity, wind and precipitation, with the support from in situ measurements and stage IV remote sensing products. Our results indicate that the Global Forecasting System (GFS) provides overall better initial and boundary conditions compared to the North American Model (NAM) for wind, mean sea level pressure and precipitation. The combination of tropical suite physics options and GFS initialization provided the best forecast improvement, with error reduction of 36% and an increase of the correlation by 11%. The choices for model spin-up time and forecast cycle did not affect the forecast of the storm significantly. In order to check the consistency of the result found from the investigation related to TS Isaias, Irene (2011), Henri (2021) and Elsa (2021), three other tropical storms, were also investigated. Similar to Isaias, these storms are simulated with NAM and GFS initialization and different physics options. The overall results for Henri and Elsa indicate that the models with GFS initialization and tropical suite physics reduced error by 44% and 57%, respectively, which resonates with the findings from the TS Isaias investigation. For Irene, the initialization used an older GFS version and showed increases in error, but applying the tropical physics option decreased the error by 20%. Our recommendation is to consider GFS for the initialization of the WRF model and the tropical physics suite in a future tropical storm forecast for the NE US.

Funder

Eversource Energy Center at the University of Connecticut

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. Wang, Z. (2015). Encyclopedia of Atmospheric Sciences, Elsevier.

2. Sillmann, J., Daloz, A.S., Schaller, N., and Schwingshackl, C. (2021). Climate Change, Elsevier.

3. Clouds and Precipitation in Tropical Cyclones;Houze;International Geophysics,2014

4. Bushra, N., and Rohli, R.V. (2021). Annotated Atlas of Coastal and Marine Winds, Elsevier.

5. Navarro, A., and Merino, A. (2022). Precipitation Science, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3