Filtering Green Vegetation Out from Colored Point Clouds of Rocky Terrains Based on Various Vegetation Indices: Comparison of Simple Statistical Methods, Support Vector Machine, and Neural Network

Author:

Štroner Martin1ORCID,Urban Rudolf1,Suk Tomáš1

Affiliation:

1. Department of Special Geodesy, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic

Abstract

Filtering out vegetation from a point cloud based on color is only rarely used, largely due to the lack of knowledge of the suitability of input information (color, vegetation indices) and the thresholding methods. We have evaluated multiple vegetation indices (ExG, ExR, ExB, ExGr, GRVI, MGRVI, RGBVI, IKAW, VARI, CIVE, GLI, and VEG) and combined them with 10 methods of threshold determination based on training set selection (including machine learning methods) and the renowned Otsu’s method. All these combinations were applied to four clouds representing vegetated rocky terrain, and the results were compared. The ExG and GLI indices were generally the most suitable for this purpose, with the best F-scores of 97.7 and 95.4, respectively, and the best-balanced accuracies for the same combination of the method/vegetation index of 98.9 and 98.3%, respectively. Surprisingly, these best results were achieved using the simplest method of threshold determination, considering only a single class (vegetation) with a normal distribution. This algorithm outperformed all other methods, including those based on a support vector machine and a deep neural network. Thanks to its simplicity and ease of use (only several patches representing vegetation must be manually selected as a training set), this method can be recommended for vegetation removal from rocky and anthropogenic surfaces.

Funder

Grant Agency of CTU in Prague

Technology Agency of the Czech Republic

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3