Automatic Pear Extraction from High-Resolution Images by a Visual Attention Mechanism Network

Author:

Wang Jinjie123,Ding Jianli123,Ran Si123,Qin Shaofeng123ORCID,Liu Bohua123,Li Xiang123ORCID

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 800046, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China

3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China

Abstract

At present, forest and fruit resource surveys are mainly based on ground surveys, and the information technology of the characteristic forest and fruit industries is evidently lagging. The automatic extraction of fruit tree information from massive remote sensing data is critical for the healthy development of the forest and fruit industries. However, the complex spatial information and weak spectral information contained in high-resolution images make it difficult to classify fruit trees. In recent years, fully convolutional neural networks (FCNs) have been shown to perform well in the semantic segmentation of remote sensing images because of their end-to-end network structures. In this paper, an end-to-end network model, Multi-Unet, was constructed. As an improved version of the U-Net network structure, this structure adopted multiscale convolution kernels to learn spatial semantic information under different receptive fields. In addition, the “spatial-channel” attention guidance module was introduced to fuse low-level and high-level features to reduce unnecessary semantic features and refine the classification results. The proposed model was tested in a characteristic high-resolution pear tree dataset constructed through field annotation work. The results show that Multi-Unet was the best performer among all models, with classification accuracy, recall, F1, and kappa coefficient of 88.95%, 89.57%, 89.26%, and 88.74%, respectively. This study provides important practical significance for the sustainable development of the characteristic forest fruit industry.

Funder

National Natural Science Foundation of China Joint Fund Key Project

Key Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region

Key Research Projects for Teachers of Universities in Autonomous Regions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3