Robust Pedestrian Dead Reckoning Integrating Magnetic Field Signals and Digital Terrestrial Multimedia Broadcasting Signals

Author:

Liu Xiaoyan12ORCID,Chen Liang12ORCID,Jiao Zhenhang1,Lu Xiangchen1

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

2. Hubei Luojia Laboratory, Wuhan 430079, China

Abstract

Currently, many positioning technologies complementary to Global Navigation Satellite System (GNSS) are providing ubiquitous positioning services, especially the coupling positioning of Pedestrian Dead Reckoning (PDR) and other signals. Magnetic field signals are stable and ubiquitous, while Digital Terrestrial Multimedia Broadcasting (DTMB) signals have strong penetration and stable transmission over a large range. To improve the positioning performance of PDR, this paper proposes a robust PDR integrating magnetic field signals and DTMB signals. In our study, the Spiking Neural Network (SNN) is first used to learn the magnetic field signals of the environment, and then the learning model is used to detect the magnetic field landmarks. At the same time, the DTMB signals are collected by the self-developed signal receiver, and then the carrier phase ranging of the DTMB signals is realized. Finally, robust pedestrian positioning is achieved by integrating position information from magnetic field landmarks and ranging information from DTMB signals through Extended Kalman Filter (EKF). We have conducted indoor and outdoor field tests to verify the proposed method, and the outdoor field test results showed that the positioning error cumulative distribution of the proposed method reaches 2.84 m at a 68% probability level, while that of the PDR only reaches 8.77 m. The proposed method has been validated to be effective and has good positioning performance, providing an alternative solution for seamless indoor and outdoor positioning.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hubei Province

Special Fund of Hubei Luojia Laboratory

Special Research Fund of LIESMARS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3