Fast Frequency-Diverse Radar Imaging Based on Adaptive Sampling Iterative Soft-Thresholding Deep Unfolding Network

Author:

Wu Zhenhua123ORCID,Zhao Fafa1ORCID,Zhang Lei4,Cao Yice1,Qian Jun1ORCID,Xu Jiafei1,Yang Lixia1ORCID

Affiliation:

1. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China

2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471000, China

3. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China

4. School of Electronics and Communication, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

Frequency-diverse radar imaging is an emerging field that combines computational imaging with frequency-diverse techniques to interrogate the high-quality images of objects. Despite the success of deep reconstruction networks in improving scene image reconstruction from noisy or under-sampled frequency-diverse measurements, their reliance on large amounts of high-quality training data and the inherent uninterpretable features pose significant challenges in the design and optimization of imaging networks, particularly in the face of dynamic variations in radar operating frequency bands. Here, aiming at reducing the latency and processing burden involved in scene image reconstruction, we propose an adaptive sampling iterative soft-thresholding deep unfolding network (ASISTA-Net). Specifically, we embed an adaptively sampling module into the iterative soft-thresholding (ISTA) unfolding network, which contains multiple measurement matrices with different compressed sampling ratios. The outputs of the convolutional layers are then passed through a series of ISTA layers that perform a sparse coding step followed by a thresholding step. The proposed method requires no need for heavy matrix operations and massive amount of training scene targets and measurements datasets. Unlike recent work using matrix-inversion-based and data-driven deep reconstruction networks, our generic approach is directly adapted to multi-compressed sampling ratios and multi-scene target image reconstruction, and no restrictions on the types of imageable scenes are imposed. Multiple measurement matrices with different scene compressed sampling ratios are trained in parallel, which enables the frequency-diverse radar to select operation frequency bands flexibly. In general, the application of the proposed approach paves the way for the widespread deployment of computational microwave and millimeter wave frequency-diverse radar imagers to achieve real-time imaging. Extensive imaging simulations demonstrate the effectiveness of our proposed method.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Foundation of An’Hui Educational Committee

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3