A Technique for Generating Preliminary Satellite Data to Evaluate SUHI Using Cloud Computing: A Case Study in Moscow, Russia

Author:

Le Minh Tuan1ORCID,Bakaeva Natalia1ORCID

Affiliation:

1. Department of Urban Planning, Moscow State University of Civil Engineering, 26, Yaroslavskoye Shosse, Moscow 129337, Russia

Abstract

The expansion of construction zones, transportation, and utilities for industry and high-tech areas due to human activities has caused the deterioration of the natural ecological environment. As cities face problems related to the surface urban heat island (SUHI) effect and environmental pollution, there is an urgent need to develop new methods for the ecological–microclimatic assessment and structural–functional planning of urban areas. The main goal of this study was to demonstrate the evolution of the surface urban heat island (SUHI) effect in Moscow over a long period and to determine the interaction between SUHIs and urban pollution islands (UPIs) using a geospatial analysis platform while optimizing vegetation classification with machine learning. Additionally, we are creating a digital database for modeling the sustainability of cities on the GEE platform using cloud computing. This study used cloud computing and remote sensing image analysis platforms for a 17-year temporal-series ecological–microclimatic assessment, which provided a sequence of values describing the ongoing process of changes in the ecological conditions of Moscow over time. Combining machine learning with the random forest algorithm (RF) improved vegetation classification accuracy while reducing computation time. The study findings demonstrated how the SUHI affected Moscow’s territory and showed the urban areas significantly impacted by this phenomenon. The locations of surface urban heat islands in Moscow and areas affected by SUHI and UPI were identified using numerical modeling of the urban thermal field variance index (UTFVI). From the findings, we identified the need to develop a new method for obtaining geospatial data for assessing the interaction between UPIs and SUHIs using cloud computing and mathematical data models.

Funder

Moscow State University of Civil Engineering and the Ministry of Education of Vietnam

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3