GRACE Data Quantify Water Storage Changes in the Shiyang River Basin, an Inland River in the Arid Zone

Author:

Meng Gaojia12,Zhu Guofeng123,Liu Jiawei12,Zhao Kailiang12,Lu Siyu13,Li Rui13,Qiu Dongdong13,Jiao Yinying13,Chen Longhu13,Sun Niu1

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. Lanzhou Sub-Center, Remote Sensing Application Center, Ministry of Agriculture, Lanzhou 730000, China

3. Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, China

Abstract

Global changes and human activities have significantly altered water cycle processes and water resource patterns in inland river basins in arid zones. New tools are needed to conduct more comprehensive and scientific assessments of basin water cycle processes and water resource patterns. Based on GRACE satellite and Landsat data, this study investigated terrestrial water storage changes and surface water area in the Shiyang River Drainage Basin from 2002 to 2021. It explored the effects of climate change and water conservancy construction on terrestrial water storage changes in the basin. The results of the study show that, although the surface water quantity in the Shiyang River basin has increased in the past 20 years, the overall decreasing trend of terrestrial water storage in the basin of the Shiyang River has an interannual decreasing rate of 0.01 cm/a. The decreasing trend of water storage in the midstream and downstream areas is more prominent. The change in precipitation controls the change in water storage in the Shiyang River Drainage Basin. Artificial water transfer has changed the spatial distribution of water resources in the basin of the Shiyang River. However, it still has not completely reversed the trend of decreasing water storage in the middle and lower reaches of the Shiyang River.

Funder

National Natural Science Foundation of China

National Natural Science Foundation innovation research group science foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3