Resilience Approach for Assessing Fish Recovery after Compound Climate Change Effects on Algal Blooms

Author:

Starck Sascha1ORCID,Wolter Christian1

Affiliation:

1. Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany

Abstract

In Europe, climate change will increase hydrologic extremes, resulting in shorter flood peaks and longer droughts. Extended low flows will significantly alter physico-chemical water quality, paving the way for compound, novel impacts. We analyze the Oder River catastrophe of August 2022, where the complex interplay of increased salinity, temperature, low flows, reduced water volumes and sunlight enabled Prymnesium parvum blooming. This brackish water alga grew to 100 million cells per liter and killed about 1000 tons of fish. We assess the impact on and the recovery potential of the fish population to guide both preventing future catastrophes and enhancing river resilience. Stock decline rates were assessed while accounting for natural population fluctuations. Significant relative declines in both fish and biomass density reached up to 76% and 62%, respectively. The mid-channel was more severely affected than littoral areas. Littoral shelter, depth variability, and especially lateral and longitudinal connectivity appeared essential for fish survival and recovery. The compound nature of this catastrophic event highlights the urgent need to rethink the present mismanagement of rivers. Resilient rivers are the backbone of climate change-resilient landscapes. Therefore, we argue for holistic approaches to water resource management, aiming to increase the resilience of aquatic ecosystems.

Funder

Bundesamt für Naturschutz

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3