Prediction of the Potentially Suitable Areas of Actinidia latifolia in China Based on Climate Change Using the Optimized MaxEnt Model

Author:

Wang Zhi1,Luo Minmin12,Ye Lixia1ORCID,Peng Jue1,Luo Xuan1,Gao Lei1ORCID,Huang Qiong1,Chen Qinghong1,Zhang Lei1

Affiliation:

1. Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China

2. College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China

Abstract

Actinidia latifolia, with the highest vitamin C content in its genus, is a unique wild relative of kiwifruit that could be important for genetic breeding research. Climate change significantly influences the distribution range of wild plants. Accurately assessing the potential distribution of wild kiwifruit and its response to climate change is crucial for the effective protection and sustainable utilization of its germplasm resources. In this study, we utilized the optimized MaxEnt model to predict the potential habitats of A. latifolia in China, employing the jackknife test to assess the importance of environmental variables in our modeling process. The results showed that annual precipitation (Bio12) and temperature annual range (Bio7) emerged as the most influential environmental variables affecting the distribution of this kiwifruit wild relative. As radiative forcing and time increase, the potential habitats of A. latifolia in China are projected to shrink southward, thereby exacerbating habitat fragmentation. This research offers significant scientific references for the investigation, protection, cultivation, and application of wild relatives of the kiwifruit.

Funder

National Natural Science Foundation of China

Youth Foundation of the Hubei Academy of Agricultural Sciences

CARS

Wuhan Science and Technology Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3