Survey and Classification of Automotive Security Attacks

Author:

Sommer FlorianORCID,Dürrwang JürgenORCID,Kriesten Reiner

Abstract

Due to current development trends in the automotive industry towards stronger connected and autonomous driving, the attack surface of vehicles is growing which increases the risk of security attacks. This has been confirmed by several research projects in which vehicles were attacked in order to trigger various functions. In some cases these functions were critical to operational safety. To make automotive systems more secure, concepts must be developed that take existing attacks into account. Several taxonomies were proposed to analyze and classify security attacks. However, in this paper we show that the existing taxonomies were not designed for application in the automotive development process and therefore do not provide enough degree of detail for supporting development phases such as threat analysis or security testing. In order to be able to use the information that security attacks can provide for the development of security concepts and for testing automotive systems, we propose a comprehensive taxonomy with degrees of detail which addresses these tasks. In particular, our proposed taxonomy is designed in such a wa, that each step in the vehicle development process can leverage it.

Publisher

MDPI AG

Subject

Information Systems

Reference84 articles.

1. Autonomes Fahren: Technische, Rechtliche und Gesellschaftliche Aspekte;Maurer,2015

2. IEEE Std 802.11ak-2018 (Amendment to IEEE Std 802.11(TM)-2016 as Amended by IEEE Std 802.11ai(TM)-2016, IEEE Std 802.11ah(TM)-2016, and IEEE Std 802.11aj(TM)-2018): IEEE Standard for Information Technology-Telecommunications and Information Exchange Betwee,2018

3. Bluetooth Core Specification v5.0 https://www.bluetooth.com/specifications/bluetooth-core-specification

4. Enhancement of Automotive Penetration Testing with Threat Analyses Results

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3