MFA-OSELM Algorithm for WiFi-Based Indoor Positioning System

Author:

AL-Khaleefa ORCID,Ahmad ,Isa ,AL-Saffar ,Esa ,Malik

Abstract

Indoor localization is a dynamic and exciting research area. WiFi has exhibited a tremendous capability for internal localization since it is extensively used and easily accessible. Facilitating the use of WiFi for this purpose requires fingerprint formation and the implementation of a learning algorithm with the aim of using the fingerprint to determine locations. The most difficult aspect of techniques based on fingerprints is the effect of dynamic environmental changes on fingerprint authentication. With the aim of dealing with this problem, many experts have adopted transfer-learning methods, even though in WiFi indoor localization the dynamic quality of the change in the fingerprint has some cyclic factors that necessitate the use of previous knowledge in various situations. Thus, this paper presents the maximum feature adaptive online sequential extreme learning machine (MFA-OSELM) technique, which uses previous knowledge to handle the cyclic dynamic factors that are brought about by the issue of mobility, which is present in internal environments. This research extends the earlier study of the feature adaptive online sequential extreme learning machine (FA-OSELM). The results of this research demonstrate that MFA-OSELM is superior to FA-OSELM given its capacity to preserve previous data when a person goes back to locations that he/she had visited earlier. Also, there is always a positive accuracy change when using MFA-OSELM, with the best change achieved being 27% (ranging from eight to 27% and six to 18% for the TampereU and UJIIndoorLoc datasets, respectively), which proves the efficiency of MFA-OSELM in restoring previous knowledge.

Funder

Universiti Teknikal Malaysia Melaka

Universiti Teknologi Malaysia

Publisher

MDPI AG

Subject

Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Look at The 3GPP Standard’s Current Positioning of 5G Networks;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

2. Improving Energy Consumption In IoT Networks: Reducing Sensors Energy By Timing Control;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

3. Text Classification Accuracy Enhancement Using Deep Neural Networks;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

4. DeepFake Videos Detection by Using Recurrent Neural Network (RNN);2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

5. Review of Beamforming’s Energy Consumption Algorithms for (5G) Wireless Networks;2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT);2023-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3