A Sparse Signal Reconstruction Method Based on Improved Double Chains Quantum Genetic Algorithm

Author:

Guo Qiang,Ruan GuoqingORCID,Wan Jian

Abstract

This paper proposes a novel method of sparse signal reconstruction, which combines the improved double chains quantum genetic algorithm (DCQGA) and the orthogonal matching pursuit algorithm (OMP). Firstly, aiming at the problems of the slow convergence speed and poor robustness of traditional DCQGA, we propose an improved double chains quantum genetic algorithm (IDCQGA). The main innovations contain three aspects: (1) a high density quantum encoding method is presented to reduce the searching space and increase the searching density of the algorithm; (2) the adaptive step size factor is introduced in the chromosome updating, which changes the step size with the gradient of the objective function at the search points; (3) the quantum π / 6 -gate is proposed in chromosome mutation to overcome the deficiency of the traditional NOT-gate mutation with poor performance to increase the diversity of the population. Secondly, for the problem of the OMP algorithm not being able to reconstruct precisely the effective sparse signal in noisy environments, a fidelity orthogonal matching pursuit (FOMP) algorithm is proposed. Finally, the IDCQGA-based OMP and FOMP algorithms are applied to the sparse signal decomposition, and the simulation results show that the proposed algorithms can improve the convergence speed and reconstruction precision compared with other methods in the experiments.

Funder

National Natural Science Foundation of China

International S&T Cooperation Program of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3