Abstract
Inspecting a 3D object which shape has elastic manufacturing tolerances in order to find defects is a challenging and time-consuming task. This task usually involves humans, either in the specification stage followed by some automatic measurements, or in other points along the process. Even when a detailed inspection is performed, the measurements are limited to a few dimensions instead of a complete examination of the object. In this work, a probabilistic method to evaluate 3D surfaces is presented. This algorithm relies on a training stage to learn the shape of the object building a statistical shape model. Making use of this model, any inspected object can be evaluated obtaining a probability that the whole object or any of its dimensions are compatible with the model, thus allowing to easily find defective objects. Results in simulated and real environments are presented and compared to two different alternatives.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Approach to Comparing Multidimensional Geometric Objects;Proceedings of the 31th International Conference on Computer Graphics and Vision. Volume 2;2021