Estimating Surgical Blood Loss Volume Using Continuously Monitored Vital Signs

Author:

Chen YangORCID,Hong Chengcheng,Pinsky Michael R.,Ma Ting,Clermont Gilles

Abstract

Background: There are currently no effective and accurate blood loss volume (BLV) estimation methods that can be implemented in operating rooms. To improve the accuracy and reliability of BLV estimation and facilitate clinical implementation, we propose a novel estimation method using continuously monitored photoplethysmography (PPG) and invasive arterial blood pressure (ABP). Methods: Forty anesthetized York Pigs (31.82 ± 3.52 kg) underwent a controlled hemorrhage at 20 mL/min until shock development was included. Machine-learning-based BLV estimation models were proposed and tested on normalized features derived by vital signs. Results: The results showed that the mean ± standard deviation (SD) for estimating BLV against the reference BLV of our proposed random-forest-derived BLV estimation models using PPG and ABP features, as well as the combination of ABP and PPG features, were 11.9 ± 156.2, 6.5 ± 161.5, and 7.0 ± 139.4 mL, respectively. Compared with traditional hematocrit computation formulas (estimation error: 102.1 ± 313.5 mL), our proposed models outperformed by nearly 200 mL in SD. Conclusion: This is the first attempt at predicting quantitative BLV from noninvasive measurements. Normalized PPG features are superior to ABP in accurately estimating early-stage BLV, and normalized invasive ABP features could enhance model performance in the event of a massive BLV.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3