Development of an Early Embryo Detection Methodology for Quail Eggs Using a Thermal Micro Camera and the YOLO Deep Learning Algorithm

Author:

Nakaguchi Victor MassakiORCID,Ahamed Tofael

Abstract

Poultry production utilizes many available technologies in terms of farm-industry automation and sanitary control. However, there is a lack of robust techniques and affordable equipment for avian embryo detection and sexual segregation at the early stages. In this work, we aimed to evaluate the potential use of thermal micro cameras for detecting embryos in quail eggs via thermal images during the first 168 h (7 days) of incubation. We propose a methodology to collect data during the incubation period. Additionally, to support the visual analysis, YOLO deep learning object detection algorithms were applied to detect unfertilized eggs; the results showed its potential to distinguish fertilized eggs from unfertilized eggs during the incubation period, after filtering radiometric images. We compared YOLOv4, YOLOv5 and SSD-MobileNet V2 trained models. The mAP@0.50 of the YOLOv4, YOLOv5 and SSD-MobileNet V2 was 98.62%, 99.5% and 91.8%, respectively. We also compared three testing datasets for different intervals of rotation of eggs, as our hypothesis was that fewer turning periods could improve the visualization of fertilized egg features, and applied three treatments: 1.5 h, 6 h, and 12 h. The results showed that turning eggs in different periods did not exhibit a linear relation, as the F1 Score for YOLOv4 of detection for the 12 h period was 0.569, that for the 6 h period was 0.404 and that for the 1.5 h period was 0.384. YOLOv5 F1 Scores for 12 h, 6 h and 1.5 h were 1, 0.545 and 0.386, respectively. SSD-MobileNet V2 performed F1 scores of 0.60 for 12 h, 0.22 for 6 h and 0 for 1.5 h turning periods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3