Cord Blood-Derived Exosomal CNTN2 and BDNF: Potential Molecular Markers for Brain Health of Neonates at Risk for Iron Deficiency

Author:

Marell Paulina S.,Blohowiak Sharon E.,Evans Michael D.ORCID,Georgieff Michael K.,Kling Pamela J.,Tran Phu V.ORCID

Abstract

Maternal iron deficiency anemia, obesity, and diabetes are prevalent during pregnancy. All are associated with neonatal brain iron deficiency (ID) and neurodevelopmental impairment. Exosomes are extracellular vesicles involved in cell–cell communication. Contactin-2 (CNTN2), a neural-specific glycoprotein, and brain-derived neurotrophic factor (BDNF) are important in neurodevelopment and found in exosomes. We hypothesized that exosomal CNTN2 and BDNF identify infants at risk for brain ID. Umbilical cord blood samples were measured for iron status. Maternal anemia, diabetes, and body mass index (BMI) were recorded. Cord blood exosomes were isolated and validated for the exosomal marker CD81 and the neural-specific exosomal marker CNTN2. Exosomal CNTN2 and BDNF levels were quantified by ELISA. Analysis of CNTN2 and BDNF levels as predictors of cord blood iron indices showed a direct correlation between CNTN2 and ferritin in all neonates (n = 79, β = 1.75, p = 0.02). In contrast, BDNF levels inversely correlated with ferritin (β = −1.20, p = 0.03), with stronger association in female neonates (n = 37, β = −1.35, p = 0.06), although there is no evidence of a sex-specific effect. Analysis of maternal risk factors for neonatal brain ID as predictors of exosomal CNTN2 and BDNF levels showed sex-specific relationships between infants of diabetic mothers (IDMs) and CNTN2 levels (Interaction p = 0.0005). While male IDMs exhibited a negative correlation (n = 42, β = −0.69, p = 0.02), female IDMs showed a positive correlation (n = 37, β = 0.92, p = 0.01) with CNTN2. A negative correlation between BNDF and maternal BMI was found with stronger association in female neonates (per 10 units BMI, β = −0.60, p = 0.04). These findings suggest CNTN2 and BNDF are respective molecular markers for male and female neonates at risk for brain ID. This study supports the potential of exosomal markers to assess neonatal brain status in at-risk infants.

Funder

Gerber Foundation

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference52 articles.

1. Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences;Crichton,2001

2. Iron Deficiency and Brain Development

3. Micronutrient Deficiency https://ourworldindata.org/micronutrient-deficiency

4. The Global Prevalence of Anaemia in 2011,2015

5. 4 Effect of iron-deficiency anaemia on cognitive skills in infancy and childhood

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3