Temporal and Spatial Nearest Neighbor Values Based Missing Data Imputation in Wireless Sensor Networks

Author:

Deng YulongORCID,Han ChongORCID,Guo Jian,Sun Lijuan

Abstract

Data missing is a common problem in wireless sensor networks. Currently, to ensure the performance of data processing, making imputation for the missing data is the most common method before getting into sensor data analysis. In this paper, the temporal and spatial nearest neighbor values-based missing data imputation (TSNN), a new imputation based on the temporal and spatial nearest neighbor values has been presented. First, four nearest neighbor values have been defined from the perspective of space and time dimensions as well as the geometrical and data distances, which are the bases of the algorithm that help to exploit the correlations among sensor data on the nodes with the regression tool. Next, the algorithm has been elaborated as well as two parameters, the best number of neighbors and spatial–temporal coefficient. Finally, the algorithm has been tested on an indoor and an outdoor wireless sensor network, and the result shows that TSNN is able to improve the accuracy of imputation and increase the number of cases that can be imputed effectively.

Funder

National Natural Science Foundation of China

the Anhui Science and Technology Department Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3